Combining the Many-Body GW Formalism with Classical Polarizable Models: Insights on the Electronic Structure of Molecular Solids.

نویسندگان

  • Jing Li
  • Gabriele D'Avino
  • Ivan Duchemin
  • David Beljonne
  • Xavier Blase
چکیده

We present an original hybrid QM/MM scheme merging the many-body Green's function GW formalism with classical discrete polarizable models and its application to the paradigmatic case of a pentacene crystal. Our calculated transport gap is found to be in excellent agreement with reference periodic bulk GW calculations, together with properly parametrized classical microelectrostatic calculations, and with photoionization measurements at crystal surfaces. More importantly, we prove that the gap is insensitive to the partitioning of pentacene molecules in QM and MM subsystems, as a result of the mutual compensation of quantum and classical polarizabilities, clarifying the relation between polarization energy and delocalization. The proposed hybrid method offers a computationally attractive strategy to compute the full spectrum of charged excitations in complex molecular environments, accounting for both QM and MM contributions to the polarization energy, a crucial requirement in the limit of large QM subsystems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical insights of magnetizability and solvent effect on the electronic properties of CoB8- molecule

Equilibrium geometry, electronic structures, and vibrational modes of CoB8- were investigated in the PBEPBE/6-311+G(d,p) level of theory. The nucleus independent chemical shift (NICS) analysis and magnetizability values were used for studying of aromaticity in CoB8-. The effects of different solvents on the structure and frontier orbital energies were calculated using the polarizable continuum ...

متن کامل

1 Scientific Highlight of the Month

We give a summary of recent progress in the field of electronic structure calculations for materials with strong electronic Coulomb correlations. The discussion focuses on developments beyond the by now well established combination of density functional and dynamical mean field theory dubbed “LDA+DMFT”. It is organized around the description of dynamical screening effects in the solid. Indeed, ...

متن کامل

Solvent Effect on the Molecular Structure, Chemical Reactivity and Spectroscopy Properties of Z-Ligustilide: A Main Active Component of Multitude Umbelliferae Medicinal Plants

In this investigation, the structural, electronic properties, 13C and 1H NMR parameters and firsthyperpolarizability of Z-Ligustilide were explored. As well, the solvent effect on structural parameters, frontier orbital energies, electronic transitions, and 13C and 1H NMR parameters was illustrated based on Polarizable Continuum Model (PCM).These consequences specify that the polarity of solven...

متن کامل

Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory.

Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consiste...

متن کامل

Fasting Reduces the Binding between Sugar and Protein; New Insights into Diabetic Complications

Fasting has numerous biological, physical and mental health advantages or that as some physicians cure their patients by prescribing fasting to them. Fasting protects people from many diseases such as cancer, cardiovascular diseases, and diabetes complications. The main health-promoting effects of fasting are increased production of neurotrophic factors, neuroendocrine activation, hormetic stre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 7 14  شماره 

صفحات  -

تاریخ انتشار 2016